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We present a front tracking technique for conservation laws in one 
dimension. The method is based on approximations to the solution of 
Riemann problems where the solution is represented by piecewise con- 
stant states separated by discontinuities. The discontinuities are tracked 
until they interact, at this point a new Riemann problem is solved and 
so on. No finite differences are used. This method is tested on the 
system of nonstationary gas dynamics defined by the Euler equations, 
and three test cases are presented. 0 1992 Academic Press. Inc 

1. INTRODUCTION 

In this paper we present the implementation of a front 
tracking technique based on a generalization of Dafermos’ 
[2] scheme for the scalar conservation law. We use the front 
tracking scheme to study the Euler equations of one-dimen- 
sional compressible gas dynamics. 

The central idea of Dafermos was to approximate the flux 
function by a piecewise linear function. The advantage of 
this is that the solution of the Riemann problem in this case 
is piecewise constant, and one can therefore solve the 
Cauchy problem with piecewise constant initial data exactly 
for all time. Subsequent work on Dafermos’ method with a 
scalar conservation law was done by LeVeque [ 121, Lucier 
[ 131, and Holden et al. [lo]. There has been some work on 
generalizations of Dafermos’ method to systems of conser- 
vation laws; Hedstrom [S] did some numerical experiments 
on the p-system for a piecewise linear function p(u), and 
Schwartz and Wendroff [16] used a hybrid method based 
on the piecewise constant solution to the Riemann problem. 

J. Glimm, 0. McBryan, and co-workers have for some 
time been using front tracking as a tool both to study gas- 
dynamics [4] and problems from reservoir simulation [ 51. 
Their approach does, however, differ from ours in that 
they approximate the smooth parts of the flow by finite 
differences. 

The basis of front tracking as we use it here, is the 
approximation of the solution of the Riemann problem by 
a step function in x/t without modifying the flux functions 
themselves. For a general initial value problem the initial 
function is approximated by a step function. Each “step” of 
this function then defines a Riemann problem which is 
solved and the solution approximated by a step function in 
x/t. This yields a set of discontinuities which propagate in 
the x-z plane until two neighboring discontinuities collide 
at some time t, > 0. At this time we solve the newly created 
Riemann problem determined by the constant states 
immediately to the left and right of the collision. The solu- 
tion of this is in turn approximated by a step function, and 
the approximation can be continued up to the next collision. 

It is clear that the approximation of the solution of the 
Riemann problem is central to this front tracking scheme. 
We use an approximation which is based on [14], where 
this front tracking technique was used to show the existence 
of a weak solution to the initial value problem under 
the same conditions as Glimm [3]. This approximation 
represents rarefraction waves by a series of “small steps” 
and keeps shocks and contact discontinuities at the correct 
position. The shocks and contact discontinuities are then 
assigned their correct speed, and the speed of the discon- 
tinuites that approximate a rarefraction wave are the 
characteristic speed on one side of the discontinuity. We 
stress that in this way no differences are taken, and the 
scheme contains no artificial viscosity. 

The discontinuities in the approximated solution are kept 
in a list going from left to right, and in addition we keep 
track of the order of collisions of discontinuities in another 
list. Thus to implement the front tracking algorithm is more 
complicated than to implement most finite difference 
schemes. However, the tracking part is independent of the 
approximation of the solution of the Riemann problem, so 
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once the front tracking machinery is made it can easily be 
adapted to handle other systems of equations. 

In Section 2 we give a description of this front tracking 
method in general, and in Section 3 we explain how it is 
used to simulate the compressible nonstationary fluid flow 
governed by the Euler equations. In Section 4 of this study 
we present three test cases for the front tracking method: 
First a closed tube problem proposed by Woodward in 
[17, IS]; second, a problem where the front tracking 
method is compared with the Lax-Friedrichs method and 
with the random choice method. The second problem is 
chosen so that there will be many interactions of tracked 
discontinuities, and this seems to be a difficult problem for 
front tracking. The front tracking method shows great 
promise with respect to the study of asymptotic behavior for 
large time, therefore we include a third test example where 
the initial function is an “almost Riemann problem,” i.e., a 
single smooth but steep transition between constant states. 

2. THE FRONT TRACKING METHOD 

The front tracking method we present here is a 
generalization of Dafermos’ method for scalar conservation 
laws. In principle the method is applicable whenever a solu- 
tion of the Riemann problem is computable, although we 
have no proof of convergence for arbitrary initial data. But, 
for strictly hyperbolic systems with sufficiently small total 
variation of the initial data, it was proved in [ 141 that the 
method produces a sub-sequence of approximate solutions 
which converges towards a weak solution of the problem. 
More precisely, [ 141 gives an alternative proof of Glimm’s 
famous existence theorem [3]. The purpose of the present 
paper is to explore the method as a computational tool. 

Consider the following system of conservation laws 

where u = u(x, t) E KY andf: KY’ + R” is a smooth function. 
The Riemann problem for (2.1) is the initial value problem 
with data of the form 

u(x,O)= u’ 1 if x<O 
u, if x > 0. (2.2) 

If u(x, t) is a solution of (2.1), (2.2) then so is u(cx, ct) for 
all constants c > 0; therefore to be unique the solution of a 
Riemann problem has to be self-similar, i.e., u(x, t) = $x/t). 
The solution of the Riemann problem is composed of 
elementary waves, i.e., rarefraction waves and shock waves 
(including contact discontinuities), and constant states. 

Rarefraction waves are classical solutions of the system 
(2.1). For such solutions (2.1) can be rewritten as 

where df is the Jacobian matrix of $ For self-similar 
solutions we obtain 

(df- (x/t) I) 27(x/t) = 0. (2.4) 

Hence x/t is an eigenvalue of df and ti(x/t) is the 
corresponding eigenvector. Let ;1 be an eigenvalue of df 
and let Y be the corresponding right eigenvector. If U is an 
integral curve of r, i.e., 

U’(5) = r(u(o), (2.5) 

and U connects the states u, and U, and if 2 increases as ii 
goes from u, to u,, then the path U traverses is called 
a rarefunction curve. Rarefraction curves are directed 
towards increasing values of A, and the function 

u/ for x/t < A(u)) 

u(x, t) = 

i 

17(x/t) for x/t = n(u) (2.6) 

ur for x/t > i(u,) 

is called a simple rarefraction solution of (2.1). The speed of 
a rarefraction wave is given by n(u); in particular the initial 
speed is n(u,) and the final speed is n(u,). 

Shock waves are weak solutions of (2.1) of the form 

u(x, t) = 
i 

u/ for x/t<o 

ur for x/t > B, 
(2.7) 

where c is the shock speed. In order to be a weak solution, 
0 has to satisfy the Rankine-Hugoniot relation 

44 - ur) = f(4) - f(k). (2.8) 

A weak solution is not necessarily unique, therefore an 
additional entropy condition is imposed on (2.8) in order to 
obtain uniqueness. 

The solution of a Riemann problem consists of a sequence 
of elementary waves connecting the left state u/ with the 
right state u,. We introduce the following notation: 
u1 4 u2 means that the state u, can be connected to u2 by 
an elementary wave w. Let u1 -5 u2 4 ug be two elemen- 
tary waves, and let uf and ur, i = 1, 2, be the initial and final 
speed of each wave. If wi is a shock wave then u: = v; = 0. 
The two waves are said to be compatible if 

VT 6 vi. (2.9) 

If both waves are shocks we impose strict inequality in (2.9). 
The notation ui -% u2 3 u3 means that w1 and w2 are 
compatible, and that ui can be connected to u3 through the 
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intermediate state u2. A solution of a Riemann problem thus 
consists of a sequence of compatible waves 

u,=u,L u,a 242 . . .wN 24,. (2.10) 

Such a solution can be computed explicitly for many 
systems of equations, both for strictly hyperbolic systems 
[7, 151 and for systems of non-strictly hyperbolic [11] or 
mixed type [9]. 

Assume that the solution of the Riemann problem (2.2) 
for the system (2.1) can be represented in the form (2.10). 
Let 6 be some (small) positive real number. We shall 
construct a piecewise constant approximation ua(<) to the 
solution, represented by the sequences { u,,~}, { <,,i} in the 
following manner: 

uS(5) = u6,i for 56,i<4<tfb,i+l. C2.11) 

Let (ui, wi, vi, u~}~=~ denote the solution of the Riemann 
problem given by (2.10). We define {u&,~} and ta, j induc- 
tively as 

U&O = uo = U/Y ts,o= --co. (2.12) 

Assume we have defined the sequences (~~,~}ik_~, and 
{ <,,,},“= o and that u 6,k = ui for some i. The approximation 
of the wave ui Wif’ k Ui+, can be divided into two cases: 

(1) wi is a shock wave. In this case ra,k+ 1 = a(~,) and 
~&k+I=~i+l. 

(2) wi is a rarefaction wave. Let 

ME 
1 
4%+1)-4%) +1 

6 1 
(2.13) 

6, = IC”i+ I) -  n(“i) 

A4 ’ 

where rul is the largest integer smaller than or equal to y, 
and let ii be the rarefraction curve defined by (2.5). We can 
assume ti to be parameterized by 2. Now let 

and 

#b,k+,= ii@(&) + b’) (2.14) 

t &k+/=A(%,k+l) (2.15) 

for I = 1, . . . . M, cf. Figs. 2.1 and 2.2. 

We now say that (2.11) is a b-approximation to the solution 
of the Riemann problem. This approximation has the 
properties that 

I”il c l”&jl (2.16) 

sup l&(r) - u(5)l = O(6). (2.17) 

‘i 

FIG. 2.1. The approximation of a rarefraction wave in state space. 

Observe that by (2.16) all the intermediate states in the solu- 
tion of the Riemann problem are kept in the approximation, 
This is due to the separate treatment of each elementary 
wave. We believe that this property of the approximation is 
crucial in order for it to be able to reflect the complexity of 
the solution. Equation (2.17) holds, since u and u6 will be 
equal except in a rarefaction fan; here us(r) = ug,i for some 
iand lug--l 6 Iu~,~-z+~+,/ =0(d). 

This b-approximation defines a number offronts. A front 
is an object with the following attributes 

front: { uI, s, (x0, to), (x,, tl), family, pointers}. 

Here u, is the state to the left of the discontinuity, s is the 
speed of the discontinuity, (x0, to) is the point in x, t space, 
where the discontinuity originates, and (x,, tl) is the point 
in which it terminates. A front is terminated when it collides 
with one of its neighboring fronts. The family of a front 
indicates the wave type it approximates. For strictly hyper- 
bolic systems it is defined to be i if UT- 1 <s < u:+ ,. The 
pointers are used to store the fronts in a suitable data 
structure. The fronts are organized from left to right in a 
so-called x-list. Each front has a pointer to its left and right 
neighbors. This structure makes it easy to remove and add 
fronts. We also have a t-list. This list organizes the fronts 
with respect to the collision times t,. The first front in the 
list has the smallest value of tl. This front has a pointer to 
the front with the second smallest t, and so on. 

We are interested in the Cauchy problem for (2.1) with 

u(x, 0) = uo(x). (2.18) 

FIG. 2.2. The approximation of a rarefraction wave in x-r space. 
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If u0 is a piecewise constant function with a finite number of 
discontinuities, we can construct a b-approximation to the 
solution of each of the Riemann problems defined at the dis- 
continuities of uO. We now have a system of fronts, each of 
which can be propagated independently until one of them 
interacts (collides) with one (or more) of its neighbors. 
Then we solve the Riemann problem defined by the left state 
of the left colliding front and the right state of the right 
colliding front. We make a 8-approximation to this solu- 
tion, and again we have a system of fronts which can be 
tracked until the next collision. In this way the solution can 
be advanced in time, see Fig. 2.3. Now we can state the 
algorithm used to compute our numerical approximation: 

Generate step function approximation to initial function 
Generate initial fronts 
Time := 0.0 
do while Time < TotalTime 

Collision Time : = FirstCollision Time 
if CollisionTime < TotalTime then 

Solve Riemann problem at CollisionPoint 
Update the CollisionTimes 
Update the CollisionList 

else 
Advance all fronts to TotalTime 

endif 
Time : = Collision Time 

enddo 

This front tracking method is fast compared to fixed grid 
methods, since it automatically will focus computational 
effort where interactions are occurring, i.e., where the 
solution has a complex behavior. This effect is especially 
apparent when few interactions are taking place as we show 
in Example 3 in Section 4. 

FIG. 23. A system of discontinuities in X--I space. 

Remark. When updating the solution in this way, we in 
general have no theoretical limit on the number of fronts 
that may arise. Therefore we must have some mechanism 
which limits the growth of the number of fronts. In order to 
do this, we have chosen to ignore small fronts in the 
b-approximation to the solution of the Riemann problem. 
We ignore fronts which represent a discontinuity of 
magnitude less than some c(6), where c -0 as 6 +O. In 
general we have no justification for ignoring such fronts, but 
for the system of gas dynamics the numerical experiments 
showed that this resulted in an accurate and efficient 
method. 

3. APPLICATION TO GAS DYNAMICS 

We consider the equations of one-dimensional gas 
dynamics in Eulerian coordinates: 

CPU), + (P + PU2)X = 0 (3.1) 

[p(+‘+i)],+ [pu(~u2+i)+pu],=0. 

Here p is the pressure, u is velocity, p is the density, and i is 
the internal energy. We assume the gas to be polytropic so 
i = c, T, where c, is a positive constant and T is the tem- 
perature. We also assume the gas to be ideal so that 
p = RpT, where R is a positive constant. Finally, we assume 
that some y-gas law holds so that p = k exp(S/c,) py, where 
S is the entropy and k is a positive constant. Since a solution 
to (3.1) may contain discontinuities, we interpret (3.1) in the 
sense of distributions. 

An integral component of the front tracking method is the 
solution of the Riemann problem. For the system of gas- 
dynamics, this solution is well known and has been dis- 
cussed extensively, see, e.g., [ 14 and the references therein; 
71, where detailed instructions for constructing a solution 
are given, as well as a comparison between several solution 
methods. Therefore we only outline the structure of the 
solution. The Riemann problem is the special initial value 
problem for (3.1), where the initial functions take the form: 

(PY 4 P)(XY 0) = 
{ 

(P/Y U/Y PI) 
(p,, a,, p,) L: :zi. (3.2) 

There are three elementary waves in the solution of the 
Riemann problem: shocks, rarefaction waves, and contact 
discontinuities. The solution generally contains a leftward 
moving shock or rarefaction wave, a contact discontinuity, 
and a rightward moving shock or rarefaction. In fact, given 
(p,, uI, p,) and (p,, u,, p,) we can construct two curves in 
the (p, u) plane, ui and u2, passing through (p,, u,), which 
have the property that if (p,, u,) is on the curve ui, the 
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Riemann problem is solved by a leftward moving wave and 
possibly a contact discontinuity. If (p,, u,) is on the curve a2 
the Riemann problem is solved by a rightward moving wave 
and possibly a contact discontinuity. Furthermore, if uI > u, 
the wave is a shock wave, and if u, < u, the wave is a rare- 
faction wave. These curves divide the (p, u) plane into 
four regions, and the pattern of the solution (e.g., 
shock-contact-rarefaction) only depends upon which 
region (p,, u,) is in. Similarly there are curves ii, and ii, 
through (p,, u,). The Riemann problem is solved by finding 
the unique point (p,, u,), where 1, intersects u,. The 
pressure and velocity do not change across the contact dis- 
continuity and the density can be determined when (p,, u,) 
is known. Let pm, and pmr be the densities to the left and 
right of the contact discontinuity, respectively. If the back- 
ward moving wave is a shock (rarefaction) we say that 
(pr, u,, p,) is connected to (p,, u,, p,!) by a shock (rarefac- 
tion) and similarly for the forward moving wave. For our 
purposes we can regard the solution of the Riemann 
problem to be known with infinite accuracy, although the 
determination of the middle state usually requires some 
iterative procedure. 

Thus given the solution of the Riemann problem we will, 
following the general algorithm outlined above, make an 
approximation to use as a building block in our numerical 
algorithm. Let 6 be some small positive number. If 
(pi, ui, pi) is connected to (p,, u,, p,,) by a shock, we 
leave the discontinuity as it is. If the states are connected by 
a rarefaction wave we generate constant states on the curve 
ui (or iii) in (p, u, p) space as in the previous section, cf. 
(2.13) (2.14) and (2.15). These constant states are 
generated as follows. First assume that the state to the left 
is (p), uI, p,); this will be our first constant state. We then 
follow the curve u1 towards (p,, u,, pm,), a distance of 6. 
This point on the curve will be our next constant state. The 
speed of the discontinuity between these two constant states 
will be the characteristic speed to the left of the discon- 
tinuity: u - c, where c is the sound speed given by c2 = yp/p. 
We continue with steps of size 6 on the curve u1 until we 
are closer (measured in arc-length along the curve) to 
(Pm, urn, p,/) than 6 ; (p,, a,, P,!) is then the last constant 
state. If the state on the left is (p,, u,, p,,) the wave is a 
forward moving rarefaction wave. In this case we start from 
(p,, a,, p,) and choose our constant states on ii,. Otherwise 
the procedure is symmetrical. We leave the contact discon- 
tinuity in the middle as it is. This approximation we call a 
&approximation to the solution of the Riemann problem. 

As in the previous section, a 6-approximation consists of 
a number offronts. Each front has a state; (p, u, p) which is 
the constant state immediately to the left of it, a speed, and 
a family. The family of a front is 1 if the left and right states 
of the front lie on a u1 curve; similarly the family is 2 if the 
states lie on a 6, curve. The family of a contact discontinuity 
is 0. 

Our strategy is now to approximate the initial data as 
piecewise constant, solve the Riemann problems at t = 0, 
then make &approximations to the solutions of the initial 
Riemann problems, and finally to track each front until it 
interacts with one of its neighboring fronts. Here we can 
solve a new Riemann problem with states defined by the 
states of the colliding fronts, make a b-approximation to 
this solution, and track the fronts until the next collision. In 
this way we update the solution in time. In order to do this 
we equip our fronts with some more structure. A front has 
a starting point (x, t), as well as a collision time t, which is 
the time it will collide with one of its neighbors. If the front 
will not collide this parameter is set to be co. To order these 
collision times each front also has a pointer to the front 
which has the first collision time after the fronts own 
collision time. Finally each front has a strength which is 
the distance along the uj curve between the state to the 
left of the front and the state of the right of the front. 

The step function approximation to the initial data is also 
related to 6. We assume our initial data to be piecewise con- 
tinuous and constant outside some bounded interval. Let 
U = (p, a, p), and let the initial function take the value U1 to 
the left of this interval and the value U, to the right of it. Fix 
xg= -co, uo= u,, and let the sequences {Vi},“_, and 
{xi} y= I be defined by 

xi= inf {IU,(x)- Uipll >S}, u; = U,(x,). (3.3) x > x,+, 

Redefine UN= U,. A collision is said to have a strength 
equal to the product of the strengths of the colliding fronts. 
When creating a b-approximation to the solution of a 
Riemann problem after a collision of fronts, we will not 
create new frons of families different from the families of 
those that collide if the collision strength is less than the 
minimum of (b/2,6’). 

Most of the CPU time (more than 95 %) used by the front 
tracking method is spent solving Riemann problems. It is 
therefore important to have fast Riemann solvers available. 
We have used the Riemann solver described and recom- 
mended by Gottlieb and Groth in [7]. 

4. EXAMPLES 

In this section we present three test examples where the 
front tracking method has been used. We want to explore 
some of the properties of the front tracking method, such as 
the convergence rate and conservation of mass end energy, 
and to compare it with other numerical methods. 

In case of a strictly hyperbolic conservation law with 
initial data of small total variation, the front tracking 
method produces a sequence which converges in L,-norm 
[ 143. Hence we use the relative difference in L, between a 
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FIG. 4.1. Problem # 1. All fronts from t= 0 to f = 0.038 for the FIG. 4.2. Problem # 1. The reference solution and the approximation 
approximation using 6 = 100.0. with 6 = 20.0 at c = 0.038. 

reference solution and the approximate solution as measure 
of the error. Let \lfll i = 1 If1 d x and define the relative error 

E= lIPa-All + II%-41 + IICd --cl1 1 

lIPIll Ilull I IICIII . 
(4.1) 

Here c is the sound speed. The quantities with subscript 6 
are the approximate solutions. 

EXAMPLE 1. This example is taken from Woodward 
and Colella [ 17, 181 and seems to be a standard test 
problem in numerical gas dynamics. The initial condition 
consists of three constant states of a y gas law, y = 1.4. The 
gas is initially at rest between closed walls at x =0 and 
x = 1. The density is everywhere unity, but the pressure 
varies: 

i 

1000.0 for xcO.1 

p(O)= 0.01 for 0.1 < x < 0.9 (4.2) 

100.0 for x>O.9. 

Initially two shock waves develop and interact, while two 
rarefaction develop and are reflected off the walls at each 
end of the tube. These reflections again interact with each of 
the shock waves and a very complicated pattern is quickly 
established. (See also [ 181 for a qualitative description of 
the solution.) In Fig. 4.1 we see all fronts for an approxima- 

Density 

6.00 

1.36 

2.73 

i 

0.75 

1 

The reference solution to this problem used 6 = 0.8. At 
t = 0.038 approximately 5,000,OOO collisions of fronts have 
occurred. The reference solution seems to agree well with 
the solution reported in [IS]; both the peaks and the posi- 
tion of the discontinuities all agree. In Fig. 4.2 we see the 
reference solution and an approximation using 6 = 20.0. 
Note that the positions of all major shocks are virtually 
identical in the two solutions. In Table I we show 6, the L, 
error, the error in mass conservation, the error in energy 
conservation, and the CPU time used by the front tracker 

TABLE I 

Front Tracking 

6 CPU Error Mass err % Energy err % 

50.0 5.2 0.165 0.71 0.92 
40.0 10.8 0.098 0.51 0.60 
30.0 17.8 0.079 0.38 0.47 
25.0 26.4 0.069 0.39 0.41 
20.0 37.0 0.056 0.30 0.29 
15.0 86.7 0.037 0.25 0.30 
12.5 134.8 0.030 0.24 0.25 
10.0 193.7 0.026 0.19 0.23 
7.5 391.1 0.020 0.16 0.20 
7.0 399.9 0.018 0.14 0.19 
6.0 690.3 0.017 0.12 0.14 
5.0 810.3 0.014 0.09 0.11 

standard error estimate for the exponent 0.06. 

Note. Based on a standard regression analysis we compute: E = O(S’.02), 
standard error estimate for the exponent 0.03; CPU time= O(E-‘I), 

tion using 6 = 100.0 from t = 0.0 to t = 0.038. 
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for this problem. Note that although the front tracker is not Glimm’s method and Lax-Friedrichs’ method. Since the 
conservative, the errors in the mass balance and the energy front tracking method will be least efficient when there are 
balance remain small, and correlates well with the L, error. many interactions, we constructed an initial value problem 
Based on standard regression analysis we have calculated which gives many interactions of fronts in a short time. For 
exponents rl and rl such that E = O(W) and CPU time = the Lax-Friedrichs method and the random choice method 
O(s’*). These are given at the bottom of Table I. we used a uniform grid for the space variable and calculated 

the optimal time step at each time level according to the 
EXAMPLE 2. This example was constructed in order to CFL condition. For a description of Glimm’s method we 

compare the front tracking method with two other methods: refer the reader to Chorin [l] or Gottlieb [6]. 

b 
Density Density 

0.26 

0.23 

0.27 

0.24 

0.20 

0.17 

-5.02 

Density 

JL 
5.04 

FIG. 4.3. (a) Problem #2. The reference solution and front tracking, 6 = 1.0, CPU time = 10.1; (b) The reference solution and Glimm’s method, 
AX = 0.02, CPU time = 219.2; (c) The reference solution and Lax-Friedrichs method, Ax = 0.04, CPU time = 13.5. 
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The problem consisted of an open shock tube with initial 
velocity everywhere zero, the initial sound speed everywhere 
10.0, and the pressure distribution was given by 

r f(-7) for x< -7 

PO(x)= f(x) for -7<x<7 (4.3) 

f(7) for x>7, 

where 

f(x) = 11 + 20ep5x2 + 15e~5(“-3)*. (4.4) 

Also for this problem we used a y-gas law with y = 1.4. We 
calculated this solution up to t = 0.25. As a reference solu- 
tion we used the front tracking method with 6 = 0.03. This 
run had more than 9,000,000 collisions of fronts. In Fig. 4.3 
we see the density of the approximate solutions of the three 
methods: (a) for front tracking, (b) for Glimm’s method, 
and (c) for the Lax-Friedrichs method, as well as the den- 
sity of the reference solution, at t = 0.25. We see that a 
leftward and a rightward moving wavegroup have formed, 
and that the solution contains four strong shocks. In 
Table II we present CPU times and errors for the three 
methods. Both Glimm’s method and the front tracker have 
roughly the right discontinuities in the right places, but the 
front tracker only uses a fraction of the CPU time of 
Glimm’s method. The front tracker does not have the same 
peak values as the reference solution, which is due to 
the approximation of the initial value function. The 
Lax-Friedrichs method is reasonably fast, but has poor 
resolution of the shocks. To investigate the “convergence 
rates” of the different methods, we used regression analysis 
to calculate exponents r such that CPU time = O(E’) for 
each method. These indicate that the three methods have 
roughly the same r’s, but note that in order to obtain an 
error of, e.g., 0.06, the front tracking method needs a CPU 
time of 21 while the Lax-Friedrichs method needs 622 and 
Glimm’s method does not reach this level of accuracy 
despite a CPU time of 700. 

EXAMPLE 3. The front tracking method is well suited to 
study asymptotic behaviour. In order to investigate this we 
have chosen the third example such that the initial data are 
“close to” a Riemann problem. The initial sound speed and 
velocity are 10.0 and 0.0, respectively, and the initial 
pressure has the distribution 

for x< -25 

pO(x) = lOO( 1 - tanh(x)) + 10 for -c25<x<40 

10 for x > 40, (4.5) 

We calculated the solution to this problem up to t = 2.0. At 

6 

TABLE IIa 

Front Tracking 

CPU Error 

1.0 10.18 0.118 
0.9 13.30 0.095 
0.7 21.90 0.058 
0.6 42.06 0.045 
0.5 69.02 0.043 
0.4 121.74 0.040 
0.3 267.00 0.03 1 
0.2 799.66 0.020 

Note. Based on a standard regression analysis we compute: E = O(S’.‘), 
standard error estimate for the exponent 0.1; CPU time = O(E-‘.~), 
standard error estimate for the exponent 0.3. 

TABLE IIb 

Glimm’s Method 

AX CPU Error 

0.10 6.7 0.708 
0.09 8.0 0.616 
0.08 13.1 0.726 
0.07 23.5 0.512 
0.06 26.8 0.410 
0.05 43.5 0.592 
0.04 61.7 0.372 
0.03 96.9 0.197 
0.02 219.2 0.23 1 
0.01 696.9 0.144 

Note. Based on a standard regression analysis we compute: E = O(Ax’.‘), 
standard error estimate for the exponent 0.1; CPU time= O(E-*~), 
standard error estimate for the exponent 0.4. The number of grid blocks is 
14.O/Ax. 

TABLE IIc 

Lax-Friedrichs Method 

AX 

0.10 

CPU 

2.22 

Error 

0.398 
0.09 2.72 0.367 
0.08 3.48 0.332 
0.07 4.42 0.303 
0.06 6.10 0.268 
0.05 8.98 0.234 
0.04 13.54 0.200 
0.03 55.24 0.159 
0.02 233.24 0.115 
0.01 347.44 0.070 
0.008 622.48 0.061 
0.006 1403.46 0.03 1 

Note. Based on a standard regression analysis we compute: 
E= O(AX’.~‘), standard error estimate for the exponent 0.03; CPU 
time = O(E-2-4), standard error estimate for the exponent 0.1. The number 
of grid blocks is 14.O/Ax. 
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Den*ity Density 

FIG. 4.4. (a) Problem #3. The reference solution and front tracking, 6 = 12.0, CPU time = 1.4; (b) The reference solution and Lax-Friedrichs 
method, dx = 0.2, CPU time = 17.0. 

TABLE IIIa 

Lax-Friedrichs Method 

Ax CPU Error 

0.5 2.98 0.171 
0.4 4.34 0.145 
0.3 7.64 0.118 
0.2 17.02 0.087 
0.1 66.62 0.05 1 

Nofe. Based on a standard regression analysis we compute: 
E= ~(Ax”.‘~), standard error estimate for the exponent 0.01; CPU 
time = O(E-‘.~*), standard error estimate for the exponent 0.02. 

TABLE IIIb 

Front Tracking 

6 CPU Error 

12.0 1.42 0.056 
10.0 1.86 0.049 

8.0 3.42 0.042 
6.0 6.02 0.034 
4.0 13.50 0.024 
3.0 24.26 0.022 
2.0 62.86 0.012 

Note. Based on a standard regression analysis we compute: E = 0(S0.8), 
standard error estimate for the exponent 0.1; CPU time = O(E-~.‘), 
standard error estimate for the exponent 0.1. 

this time the solution resembles the solution to the Riemann 
problem with p, = 210.0 and pr= 10.0, except that the 
contact discontinuity has not yet developed fully. For this 
problem the front tracking method was compared with the 
Lax-Friedrichs method. The reference solution for this 
problem used 6 = 0.5. Figure 4.4 shows the solution com- 
puted by Lax-Friedrichs method (a) and the solution 
computed by the front tracker (b), as well as the reference 
solution, all at t = 2.0. Although the solution obtained by 
the front tracker used less than one tenth of the CPU time 
of that obtained by the Lax-Friedrichs method, the two 
solutions have roughly the same accuracy. In Table III we 
give the CPU times and errors for the two methods. The 
results here are all in the same vein as the results in Table II. 

5. CONCLUSION 

We have described a general front tracking algorithm for 
conservation laws in one space variable. This algorithm can 
be used for any system for which the solution to the 
Riemann problem is computable. 

The front tracker was tested on the system of com- 
pressible non-stationary gas dynamics. In our test examples 
the front tracking method gives more accurate solutions in 
less CPU time than either the Lax-Friedrichs method or 
Glimm’s method. The front tracker is well suited to study 
the asymptotic behaviour of an initial value problem. The 
method is nonconservative, but the errors in the conserved 
variables are small. 
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We aim to continue our study of this front tracking 
algorithm by applying it to a system of equations where the 
solution of the Riemann problem is more complicated. 
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